- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Deng, Yonghong (2)
-
Gu, Meng (2)
-
Han, Bing (2)
-
Li, Ju (2)
-
Xu, Guiyin (2)
-
Zhang, Zhen (2)
-
Zou, Yucheng (2)
-
Cheng, Yifeng (1)
-
Li, Xiangyan (1)
-
Meng, Hong (1)
-
Wang, Hong (1)
-
Wang, Qi (1)
-
Xu, Kang (1)
-
Zhao, Yusheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The 3D nanocomposite structure of plated lithium (LiMetal) and solid electrolyte interphases (SEI), including a polymer‐rich surficial passivation layer (SEI exoskeleton) and inorganic SEI “fossils” buried inside amorphous Li matrix, is resolved using cryogenic transmission electron microscopy. With ether‐based DOLDME‐LiTFSI electrolyte, LiF and Li2O nanocrystals are formed and embedded in a thin but tough amorphous polymer in the SEI exoskeleton. The fast Li‐stripping directions are along or , which produces eight exposed {111} planes at halfway charging. Full Li stripping produces completely sagging, empty SEI husks that can sustain large bending and buckling, with the smallest bending radius of curvature observed approaching tens of nanometers without apparent damage. In the 2nd round of Li plating, a thin LiBCCsheet first nucleates at the current collector, extends to the top end of the deflated SEI husk, and then expands its thickness. The apparent zero wetting angle between LiBCCand the SEI interior means that the heterogeneous nucleation energy barrier is zero. Due to its complete‐wetting property and chemo‐mechanical stability, the SEI largely prevents further reactions between the Li metal and the electrolyte, which explains the superior performance of Li‐metal batteries with ether‐based electrolytes. However, uneven refilling of the SEI husks results in dendrite protrusions and some new SEI formation during the 2nd plating. A strategy to form bigger SEI capsules during the initial cycle with higher energy density than the following cycles enables further enhanced Coulombic efficiency to above 99%.more » « less
-
Han, Bing; Zhang, Zhen; Zou, Yucheng; Xu, Kang; Xu, Guiyin; Wang, Hong; Meng, Hong; Deng, Yonghong; Li, Ju; Gu, Meng (, Advanced Materials)Abstract The solid electrolyte interphase (SEI) dictates the cycling stability of lithium‐metal batteries. Here, direct atomic imaging of the SEI's phase components and their spatial arrangement is achieved, using ultralow‐dosage cryogenic transmission electron microscopy. The results show that, surprisingly, a lot of the deposited Li metal has amorphous atomic structure, likely due to carbon and oxygen impurities, and that crystalline lithium carbonate is not stable and readily decomposes when contacting the lithium metal. Lithium carbonate distributed in the outer SEI also continuously reacts with the electrolyte to produce gas, resulting in a dynamically evolving and porous SEI. Sulfur‐containing additives cause the SEI to preferentially generate Li2SO4and overlithiated lithium sulfate and lithium oxide, which encapsulate lithium carbonate in the middle, limiting SEI thickening and enhancing battery life by a factor of ten. The spatial mapping of the SEI gradient amorphous (polymeric → inorganic → metallic) and crystalline phase components provides guidance for designing electrolyte additives.more » « less
An official website of the United States government
